VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

O’REILLY"Online Catalog SEARCH THE SATALOG

LAN{rUA(rE

IN A NUTSHELL

ORERLYT™

VB .NET Language in a Nutshell

By Steven Roman, Ron Petrusha & Paul Lomax
August 2001

0-596-00092-8, Order Number: 0928

654 pages, $34.95

Appendix A
What's New and Different in VB .NET

This appendix isfor readers who are familiar with earlier versions of Visual Basic,
specificaly Version 6. In this appendix, we describe the basic changes to the VB language,
both in syntax and in functionality. (Readers familiar only with Version 5 of Visual Basic
will also benefit from this chapter, although we discuss only the changes since Version 6.)

We also touch upon other changesto VB, such as error handling and additional object-
oriented programming support.

Language Changesfor VB .NET

In this section, we outline the changes made to the Visual Basic language from Version 6
to Visual Basic .NET. These language changes were made to bring VB under the umbrella
of the .NET Framework and alow a Common Language Runtime for all languagesin
Visua Studio .NET. In some sense, the changes made to the VB language were to bring the
language component of VB (as opposed to the IDE component) more in line with the C#
language (which is a derivative of C and C++).

Since we assume in this chapter that you are familiar with VB 6, we will not necessarily
discuss how VB 6 handles a given language feature, unless the contrast is specifically
helpful. Y ou can assume that if aVB .NET language feature is described in this chapter,
there has been a change in its behavior since VB 6.

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (1 of 22) [9/19/2001 4:45:28 PM]


http://oreilly.com/catalog/prdindex.html
http://oreilly.com/catalog/search.html
http://oreilly.com/catalog/vbdotnetnut/

VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

Data Types

There have been fundamental changes to datatypesin VB .NET, which we outlinein this
section. The most important change is that all of the languages under the .NET umbrella
(VB, C#, and Managed C++) now implement a subset of a common set of data types,
defined in the .NET Framework's Base Class Library (BCL). We say subset because VB
NET does not implement all of these data types. In any case, each datatypeinthe BCL is
implemented either as a class or as a structure (which is similar to a class) and, as such, has
members. The VB .NET datatypes are wrappers for the corresponding BCL data type.
While this need not concern the VB programmer, it can be used in some cases to expose a
bit more functionality from a data type. For more on data types, see Chapter 2.

Now let us consider the specifics.

Strings

Asyou may know, in VB 6, strings were implemented as a data type known as the BSTR.
A BSTR isapointer to a character array that is preceded by a 4-byte Long specifying the
length of the array. In VB .NET, strings are implemented as objects of the String class,

which is part of the NET Framework's System namespace.

One consequence of this reimplementation of stringsisthat VB .NET does not have fixed-
length strings, as does VB 6. Thus, the following code isillegal:

Dim Name As String * 30
Note, though, that stringsin VB .NET are immutable. That is, although you do not have to
declare a string's length in advance, once a value is assigned to a string, its length cannot

change. If you change that string, the .NET Common Language Runtime actually gives you
areference to anew String object. (For more on this, see Chapter 2.)

Integer/Long data type changes
VB .NET defines the following signed-integer data types:

Short
The 16-bit integer datatype. It isthe same as the Int16 data type in the Base Class
Library.

I nteger
The 32-bit integer datatype. It isthe same as the Int32 data type in the Base Class

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (2 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

Library.

Long
The 64-bit integer datatype. It is the same as the Int64 data type in the Base Class
Library.

Thus, with respect to the changes from VB 6 to VB .NET, we can say:
. The VB 6 Integer data type has become the VB .NET Short data type.
. TheVB 6 Long data type has become the VB .NET Integer data type.
Variant data type

VB .NET does not support the Variant data type. The Object datatypeisVB .NET's
universal data type, meaning that it can hold data of any other datatype. According to the
documentation, all of the functionality of the Variant data type is supplied by the Object
datatype.

We cannot resist the temptation to add that there are several penalties associated with using
auniversal datatype, including poor performance and poor program readability. Thus,
while VB .NET still provides this opportunity through the Object datatype, its useis not
recommended whenever it can be avoided.

The VarType function, which was used in VB 6 to determine the type of data stored in a
variant variable (that is, the variant's data subtype), now reports the data subtype of the
Object type instead. In addition, the TypeName function, which can be used to return a
string that indicates the data type of avariable of type Object, is still supported.

Other data type changes
Here are some additional changesin data types:

. TheDeft ype statements (Def Bool , Def Byt e, etc.), which were used to define
the default data type for variables whose names began with particular |etters of the
alphabet, are not supported in VB .NET.

. The Currency datatypeis not supported in VB .NET. However, in VB .NET, the
Decimal data type can handle more digits on both sides of the decimal point, and so
it'sa superior replacement. In VB .NET, Decimal isastrong datatype; in VB 6, it
was a Variant subtype, and a variable could be cast as a Decimal only by calling the
CDec conversion function.

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (3 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

. InVB 6, adateis stored in a Double format using four bytes. In VB .NET, the Date
datatypeis an 8-byte integer data type whose range of valuesisfrom January 1, 1 to
December 31, 9999.

Variables and Their Declaration
The changes in variable declarations and related issues are described here.
Variable declaration

The syntax used to declare variables has changed for VB .NET, making it more flexible.
Indeed, these are long awaited changes.

In VB .NET, when multiple variables are declared on the same line, if avariable is not
declared with atype explicitly, then its type is that of the next variable with an explicit type
declaration. Thus, in theline:

DDmx As Long, i, j, k As Integer, s As String

the variablesi, j, and k have type Integer. (In VB 6, the variablesi and j would have type
Variant, and only the variable k would have type Integer.)

When declaring external procedures using the Decl ar e statement, VB .NET does not
support the As Any type declaration. All parameters must have a specific type declaration.

Variable initialization

VB .NET permitstheinitialization of variables in the same line as their declaration (at long
last). Thus, we may write:

DDmx As Integer =5

to declare an Integer variable and initialize its value to 5. Similarly, we can declare and
initialize more than one variable on asingle line:

DDmx As Integer = 6, y As Integer = 9
Variable scope changes

In VB 6, avariable that is declared anywhere in a procedure has procedure scope; that is,

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (4 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

the variable isvisible to al code in the procedure.

InVB .NET, if avariable is defined inside a code block (a set of statementsthat is
terminated by an End. . . , Loop, or Next statement), then the variable has block-level
scope; that is, it is visible only within that block.

For example, consider the following VB .NET code:

Sub Test( )
If x <> 0 Then
Dimrec As |Integer
rec = 1/x
End If

MsgBox CStr(rec)
End Sub

In this code, the variable rec is not recognized outside the block in which it is defined, so
the final statement will produce an error.

It isimportant to note that the lifetime of alocal variable is always that of the entire
procedure, even if the variable's scope is block-level. Thisimpliesthat if a block is entered
more than once, a block-level variable will retain its value from the previous time the code
block was executed.

Arrays and array declarations

VB 6 permitted you to define the lower bound of a specific array, as well as the default
lower bound of arrays whose lower bound was not explicitly specified. In VB .NET, the
lower bound of every array dimension is 0 and cannot be changed. The following examples
show how to declare a one-dimensional array, with or without an explicit size and with or
without initialization:

I nplicit constructor: No initial size and no initialization
Dim Days( ) As Integer

" Explicit constructor: No initial size and no initialization
DmDays( ) As Integer = New Integer( ) {}

“Inplicit constructor: Initial size but no initialization
Di m Days(6) As |Integer

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (5 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET
" Explicit constructor: Initial size but no initialization
Dim Days( ) As Integer = New Integer(6) {}

| mplicit constructor: Initial size inplied by initialization
DmDays( ) As Integer = {1, 2, 3, 4, 5, 6, 7}

Explicit constructor, Initial size and initialization
DmDays( ) As Integer = New Integer(6) {1, 2, 3, 4, 5 6, 7}

Note that in the declaration:
Dim ArrayNane(X) As ArrayType
the number X isthe upper bound of the array. Thus, the array has size X+1.

Multidimensional arrays are declared similarly. For instance, the following example
declares and initializes a two-dimensional array:

Dim X(,) As Integer = {{1, 2, 3}, {4, 5, 6}}
and the following code displays the contents of the array:

Debug. Wite(X(0, 0))
Debug. Wite(X(0, 1))
Debug. Witeline(X(0, 2))
Debug. Wite(X(1, 0))
Debug. Wite(X(1, 1))
Debug. Wite(X(1, 2))

123
456

In VB .NET, al arrays are dynamic; there is no such thing as afixed-size array. The
declared size should be thought of simply as theinitial size of the array, which is subject to
change using the ReDi mstatement. Note, however, that the number of dimensions of an
array cannot be changed.

Moreover, unlike VB 6, the ReDi mstatement cannot be used for array declaration, but
only for array resizing. All arrays must be declared initially using a Di m(or equivalent)
Statement.

Structure/user-defined type declarations

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (6 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

In VB 6, astructure or user-defined type is declared using the Type...End Type structure.

InVB .NET, the Ty pe statement is not supported. Structures are declared using the
Structure..End St ruct ur e construct. Also, each member of the structure must be
assigned an access modifier, which can be Publ i ¢, Pr ot ect ed, Fri end, Pr ot ect ed
Friend, or Privat e. (The Dl mkeyword isequivalent to Publ i c inthis context.)

For instance, the VB 6 user-defined type:

Type RECT
Left As Long
Top As Long

Ri ght As Long
Bottom As Long
End Type

isdefined in VB .NET as:

Structure RECT
Public Left As Long
Public Top As Long
Public R ght As Long
Public Bottom As Long
End Structure

Actually, the VB .NET St r uct ur e typeisfar more reaching than its VB 6 user-defined
type predecessor. Indeed, structures have many properties in common with classes; for
instance, structures can have members (properties and methods). We discuss structures in
detail in Chapter 2.

Boolean and Bitwise Operators

Eqv and | np, two infrequently used Boolean and bitwise operators that are present in
VB6, have been removed from VB .NET.

InVB6, Eqv isthe logical equivalence operator. As a Boolean operator, it returns Tr ue if
both expressions are either Tr ue or Fal se, but it returns Fal se if oneisTr ue while the
other isFal se. Asabitwise operator, it returns 1 if both bits are the same (that is, if both
are 1 or both are 0), but it returns O if they are different. In VB .NET, Eqv can be replaced
with the equals comparison operator for logical operations. However, for bitwise
operations, you'll have to resort to a bit-by-bit comparison, as the following code fragment

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (7 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

shows:

Public Function Bitw seEqv(xl As Byte, X2 As Byte) _
As Long

Dim bl, b2, bRet As Byte
DmiCr as I|Integer

For iCr =0 to len(x1l) * 8 - 1
bl = x1 and 2" Ctr
b2 = x2 and 2" Ctr
I f bl = b2 then bRet += 22 Ctr
next

Bi twi seEqQv = DbRet
End Functi on

InVBG6, | np isthelogical implication operator. As a Boolean operator, it returns Tr ue
unlessitsfirst expression is Tr ue while the second is Fal se. Asabitwise operator, it
returns 1 unless the bit in the first expression is 1 while the bit in the second expression is
0.In VB .NET, | np can be replaced with a combination of the Not and Or operators for
logical operations. For example, the code fragment:

bResult = (Not bFlagl) O bFl ag2
IS equivalent to the VB6 statement:
bResult = bFlagl I np bFl ag2

For bitwise operations, a bit-by-bit comparison is again necessary, as the following code
fragment shows:

Public Function Bitw selnp(x1l As Byte, X2 As Byte) As Long

Dim bl, b2, bRet As Byte
DmiCr as I|Integer

For iCGtr = 0to len(x1)*8 - 1
bl = Not(x1) and 27 Cr
b2 = x2 and 2" i Cir
If bl O b2 then
bRet += 2N Ctr

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (8 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

end |f
next

Bitw selnp = bRet

End Functi on

Changes Related to Procedures

VB .NET features a number of changes to the way in which procedures are defined and
called, most of which tend to make the language more streamlined and consistent.

Calling a procedure

In VB 6, parentheses are required around arguments when making function calls. When
calling a subroutine, parentheses are required when using the Cal | statement and
proscribed when not using the Cal | statement.

In VB .NET, parentheses are always required around a nonempty argument list in any
procedure call--function or subroutine. (In subroutine calls, the Cal | statement is
optional.) When calling a parameterless procedure, empty parentheses are optional.

Default Method of Passing Arguments

In VB 6, if the parameters to a function or subroutine were not explicitly prefaced with the
ByVal or ByRef keywords, arguments were passed to that routine by reference, and
modifications made to the argument in the function or subroutine were reflected in the
variable's value once control returned to the calling routine. In VB .NET, on the other hand,
if the ByRef or ByVal keyword is not used in a parameter, the argument is passed to the
routine by value, and modifications made to the argument in the function or subroutine are
discarded once control returns to the calling program.

Optional arguments

In VB 6, aprocedure parameter can be declared as Opt i onal without specifying a default
value. For optional Variant parameters, the |sMissing function can be used to determine
whether the parameter is present.

In VB .NET, an optional parameter must declare a default value, which is passed to the
procedure if the calling program does not supply an argument for that parameter. The
IsMissing function is not supported. The following example shows an optional parameter
declaration:

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (9 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

Sub Cal cul ate(Optional ByVal Switch As Bool ean = Fal se)
Return statement

In VB .NET, the Ret ur n statement is used to return control to the calling program from a
function or subroutine. The GoSub statement is not supported. Note that the Ret ur n
statement is used to return a value from afunction.

The following function illustrates the Ret ur n statement:

Public Function Test( ) As Integer
I f MsgBox("Return", MsgBoxStyle.YesNo) = MsgBoxResult.Yes Then
Return O
El se
MsgBox (" Cont i nue")
Return 1
End If
End Function

Passing property parameters in procedures
Consider passing a property to a procedure by reference, asin:
Sub ShrinkByHal f (ByRef | Size As Long)
| Size = CLng(Il Si zel 2)
End Sub

Call ShrinkByHal f (Text 1. Hei ght)
In VB 6, when passing the value of a property by reference, the property is not updated. In
other words, passing a property by referenceis equivalent to passing it by value. Hence, in

the previous example, the property Textl.Height will not be changed.

In VB .NET, passing a property by reference does update the property, so in this case, the
Textl.Height property will be changed. Note, however, that the value of the property is not
changed immediately, but rather when the called procedure returns,

ParamArray parameters

In VB 6, if the Par amAr r ay keyword is used on the last parameter of a procedure
declaration, the parameter can accept an array of Variant parameters. In addition,

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (10 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

Par amAar r ay parameters are always passed by reference.

InVB .NET, Par amAr r ay parameters are always passed by value, and the parametersin
the array may be of any data type.

Miscellaneous Language Changes

VB .NET includes several miscellaneous changes that include the format of line numbers,
the lack of support for the GoTo and GoSub statements, and the replacement of the Wend
keyword by End Wi | e.

Line numbers

Visua Basic .NET requiresthat every line number be followed immediately by acolon (:).
A statement can optionally follow the colon. In VB 6, line labels, which were used in
particular for error handling by the On Er r or GoTo statement, had to be followed
immediately by a colon, but line numbers did not.

On GoTo

The On...GoSub and On...GoTo constructions are not supported. However, VB .NET still
supportsthe On Er r or GoTo statement.

While

TheWhi | e...\\end construction loops through code while a specified condition is Tr ue.
VB .NET retains that construction, but replaces the Wend keyword with the End Whi | e
statement. The Wend keyword is not supported.

GoSub and Return statements

In VB .NET, the GoSub statement is not supported.

Asremarked earlier, in VB .NET, the Ret ur n statement is used to return control to the
calling program from a function or subroutine. The VB 6 Exi t Sub and Exi t

Funct i on statements continue to be supported in VB .NET; however, the advantage of
the Ret ur n statement isthat it allows you to specify the function's return value as an

argument to the Ret ur n statement.

Changesto Programming Elements

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (11 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

VB .NET has removed support for several programming elements because the underlying
NET Framework class library and the Common Language Runtime (CLR) contain
equivalent functionality. Here are the victims and their replacements. (We discuss the class
library and CLR in Chaptersand .)

Constants

The Microsoft.VisualBasic.Constants class in the Base Class Library defines a number of
constants, such asthe familiar vbCr Lf constant, so these can be used as always. However,
some constants, such as the color constants vbRed and vbBIl ue, are no longer directly
supported. Indeed, the color constants are part of the System.Drawing namespace's Col or
structure, so they are accessed as follows:

Me. BackCol or = System Draw ng. Col or. Bl anchedAl nond

In most cases, to access a particular constant that isnot afield in the

Microsoft.Visual Basic.Constants class, you must designate the enumeration (or structure)
to which it belongs, along with the constant name. For example, thevbYes constant in VB

6 continues to exist as an intrinsic constant in VB .NET. However, it has a counterpart in
the MsgBoxResul t enumeration, which can be accessed as follows:

| f MsgBoxResult.Yes = MsgBox("OK to proceed?",

For alist of al built-in constants and enums, see Appendix D.

String Functions

The LSet and RSet functions have been replaced by the PadLeft and PadRight methods of
the System.String class. For instance, the following code pads the name "Donna" with
spaces on the left to make the total string length equal to 15:

Dim sNane As String = "Donna"
Msgbox(sNane. PadLeft (15))

The Sring function has been removed from the language. In its place, we simply declare a
string and initialize it, using syntax such as.

Dimstr As New String("A'c, 5)

which will define a string containing five As. Note the use of the modifier c in" A" c to
define a character (data type Char), as opposed to a String of length 1. Thisisdiscussed in

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (12 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

more detail in Chapter 2.

Emptiness

In VB 6, the Enpt y keyword indicates an uninitialized variable, and the Nul | keyword is
used to indicate that a variable contains no valid data. VB .NET does not support either
keyword, but uses the Not hi ng keyword in both of these cases.

According to the documentation: "Nul | isstill areserved word in Visua Basic .NET 7.0,
even though it has no syntactical use. This helps avoid confusion with its former
meanings." Whatever.

In addition, the IsEmpty function is not supported in VB .NET.

Graphical Functionality

The System.Drawing namespace contains classes that implement graphical methods. For
instance, the Graphics class contains methods such as DrawEllipse and DrawLine. Asa
result, the VB 6 Circle and Line methods have been dropped.

Note that the VB 6 PSet and Scale methods are no longer supported and that there are no
direct equivalents in the System.Drawing namespace.

Mathematical Functionality

Mathematical functions are implemented as members of the Math class of the System
namespace. Thus, the VB 6 math functions, such as the trigonometric functions, have been
dropped. Instead, we can use statements such as:

Mat h. Cos( 1)

Note also that the Round function has been replaced by Round method of the System.Math
class.

Diagnostics

The System.Diagonstics namespace provides classes related to programming diagnostics.
Most notably, the VB 6 Debug object is gone, but its functionality is implemented in the
System.Diagnostics.Debug class, which has methods such as Write, WriteLine (replacing
Print), Writelf, and WriteLinelf. (You won't believe it, but thereis still no method to clear

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (13 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

the Output window!)

Miscellaneous

Here are afew additional changesto consider:

. The VB 6 DoEvents function has been replaced by the DoEvents method of the
Application class of the System.Windows.Forms namespace.

. The VB 6 IsNull and IsObject functions have been replaced by the ISDBNull and
| sSReference methods of the Information class of the Microsoft.VisualBasic
namespace. Since this namespace is implicitly loaded by VB as part of the project
template when a project is created in Visua Studio, no | nport s statement is
required, and the members of its classes can be accessed without qualification.

. Severa VB 6 functions have two versions. a String version and aVariant version.
An exampleis provided by the Trim$ and Trim functions. In VB .NET, these
functions are replaced by a single overloaded function. Thus, for instance, we can
call Trimusing either a String or Object argument.

Obsolete Programming Elements

The following list shows some of the programming elements that have been removed from
Visua Basic .NET:

As Any
Required all parametersto have a declared data type.

Atn function
Replaced by System.Math.Atan.

Calendar property
Handled by classes in the System.Globalization namespace.

G rcl e statement
Use methods in the System.Drawing namespace.

Currency data type
Replaced by the Decimal data type.

Date function

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (14 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

Replaced by the Today property of the Dat eTi e structure in the System
namespace.

Dat e statement
Replaced by the Today statement.

Debug.Assert method
Replaced by the Assert method of the Debug class of the System.Diagonistics
namespace.

Debug.Print method
Replaced by the Write and Writeline methods of the Debug class of the
System.Diagonistics namespace.

Def t ype statements
Not supported.

DoEvents function
Replaced by the DoEvents method of the Application classin
System.Windows.Forms namespace.

Enpt y keyword
Replaced by the Not hi ng keyword.

Eqv operator
Use the equal sign.

GoSub statement
Not supported.

| np operator
Al np Bislogicaly equivalent to ( Not A) O B.

Initialize event
Replaced by the constructor method.

Instancing property
Use the constructor to specify instancing.

| sSEmpty function
Not supported because the Enpt y keyword is not supported.

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (15 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

IsMissing function
Not supported because every optional parameter must declare a default value.

ISNull function
Not supported. The Nul | keyword isreplaced by Not hi ng.

| sObject function
Replaced by the | sReference function.

Let statement
Not supported.

Li ne statement
Use the DrawL ine method of the Graphics classin the System.Drawing namespace.

LSet statement
Use the PadL eft method of the String class in the System namespace.

Nul | keyword
Use Not hi ng.

On...GoSub construction
Not supported. No direct replacement.

On...GoTo construction
Not supported. No direct replacement. On Err or . . . isstill supported, however.

Opt i on Base statement
Not supported. All arrays have lower bound equal to O.

Opti on Pri vat e Modul e statement
Use access modifiersin each individual Modul e statement.

Property Get,Property Let,andProperty Set statements
Replaced by anew unified syntax for defining properties.

PSet method
Not supported. No direct replacement. See the System.Drawing namespace.

Round function
Use the Round method of the Math class of the System namespace.

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (16 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

RSet statement
Use the PadRight method of the String class in the System namespace.

Scale method
Not supported. No direct replacement. See the System.Drawing namespace.

Set statement
Not supported.

Sgn function
Use Math.Sign.

Sgr function
Use Math.Sqrt.

Sring function
Use the String class constructor with parameters.

Terminate event
Use the Destroy method.

Time function and statement
Instead of the Time function, use the TimeOfDay method of the Dat eTi ne
structure of the System namespace. Instead of the Ti ne statement, use the
Ti meOF Day statement.

Type statement
Usethe St r uct ur e statement.

Variant datatype
Use the Object data type.

VarType function
Use the TypeName function or the GetType method of the Object class.

Wend keyword
Replaced by End Whi | e.

Structured Exception Handling

VB .NET has added a significant new technique for error handling. Along with the

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (17 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

traditional unstructured error handling through On Er r or Got o statements, VB .NET
adds structured exception handling, using the Tr y...Cat ch...Fi nal | y syntax supported
by other languages, such as C++. We discuss thisin detail in Chapter 7.

Changes in Object-Orientation

Asyou may know, Visua Basic has implemented some features of object-oriented
programming since Version 4. However, in terms of object-orientation, the step from
Version 6 to VB .NET isvery significant. Indeed, some people did not consider VB 6 (or
earlier versions) to be atruly object-oriented programming language. Whatever your
thoughts may have been on this matter, it seems clear that VB .NET is an object-oriented
programming language by any reasonable definition of that term.

Here are the main changes in the direction of object-orientation. We discuss these issues in
detail in Chapter 3.

Inheritance

VB .NET supports object-oriented inheritance (but not multiple inheritance). This means
that a class can derive from another (base) class, thereby inheriting all of the properties,
methods, and events of the base class. Since forms are also classes, inheritance appliesto
forms aswell. This allows new forms to be created based on existing forms. We discuss
inheritance in detail in Chapter 3.

Overloading

VB .NET supports alanguage feature known as function overloading. Theideais simple
and yet quite useful. We can use the same name for different functions (or subroutines), as
long as the functions can be distinguished by their argument signature. The argument
signature of afunction (or subroutine) is the sequence of data types of the arguments of the
function. Thus, in order for two functions to have the same argument signature, they must
have the same number of arguments, and the corresponding arguments must have the same
datatype. For example, the following declarations are legal in the same code module
because they have different argument signatures:

Overl oads Sub OpenFile( )
' Ask user for file to open and open it
End Sub

Overl oads Sub OpenFil e(ByVal sFile As String)

' Open file sFile
End Sub

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (18 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

Object Creation

VB 6 supports aform of object creation called implicit object creation. If an object variable
Is declared using the New keyword:

Di m obj As New Soned ass

then the object is created the first time it is used in code. More specifically, the object
variableisinitialy given the value Not hi ng, and then every time the variableis
encountered during code execution, VB checksto seeif the variable is Not hi ng. If so, the
object is created at that time.

VB .NET does not support implicit object creation. If an object variable contains
Not hi ng when it is encountered, it isleft unchanged, and no object is created.

In VB .NET, we can create an object in the same statement as the object-variable
declaration, as the following code shows:

Di m obj As SoneCd ass = New Soned ass
As a shorthand, we can also write:
Di m obj As New Soned ass

If the object's class constructor takes parameters, then they can be included, asin the
following example:

Di m obj As SoneCl ass = New SonmeC ass(argunentl, argunent2,...)
As a shorthand, we can also write:
Di m obj As New SoneC ass(argunmentl, argunent2,...)

For details on class constructors, see Chapter 3.

Properties

There have been afew changesin how VB handles properties, particularly with respect to
default properties and property declarations.

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (19 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

Default properties

Asyou know, you can use default propertiesin VB 6. For instance, if txt is a textbox
control, then:

txt = "To be or not to be"
assigns the string "To be or not to be" to the default Text property of the textbox txt.

However, thereis aprice to pay for default properties: ambiguity. For example, if txt1 and
txt2 are object variables referencing two TextBox controls, what does:

txtl = txt2

mean? Are we equating the default properties or the object variables? In VB 6, thisis
interpreted as equating the default properties:

txtl. Text = txt2. Text
and we require the Set statement for object assignment:
Set txtl = txt2

In VB .NET, default properties are not supported unless the property takes one or more
parameters, in which case there is no ambiguity.

As Microsoft points out, default properties occur most commonly with collection classes.
For example, in ActiveX Data Objects (ADO), the Fields collection of the Recordset object
has a default Item property that returns a particular Field object. Thus, we can write:

rs.Fields.lten(1). Val ue

or, since the default Item property is parameterized:

rs. Fields(1). Val ue

Although we may not be used to thinking of thisline as using default properties, it does.
Thus, in VB .NET, theline:

txtl = txt2

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (20 of 22) [9/19/2001 4:45:28 PM]



VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET

IS an object assignment. To equate the Text properties, we must write:
txt2. Text = txtl. Text

Sinceit is no longer needed, the Set keyword is not supported under VB .NET, nor isthe
companion Let keyword.

This settles the issue of equating object variables. For object variable comparison,
however, we must use the | s operator, rather than the equal sign, asin:

If txtl Is txt2 Then

or:

If Not (txtl Is txt2) Then
Property declarations

In VB 6, properties are defined using Pr operty Let , Property Set,and Property
Get procedures. However, VB .NET uses a single property-declaration syntax of the form
shown in the following example. Note also that there is no longer aneed to distinguish
between Pr operty Let and Property Set because of the changesin default property
support.

Property Salary( ) As Deci nal

Get

Sal ary = ndecSal ary
End GCet
Set

ndecSal ary = Val ue
End Set

End Property

Note the use of the implicitly defined Val ue variable that holds the value being passed
into the property procedure when it is being set.

Note also that VB .NET does not support By Ref property parameters. All property
parameters are passed by value.

Back to: VB .NET Languagein a Nutshell

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (21 of 22) [9/19/2001 4:45:28 PM]


http://oreilly.com/catalog/vbdotnetnut/

VB .NET Language in aNutshell: Appendix A: What's New and Different in VB .NET

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://oreilly.com/catalog/vbdotnetnut/chapter/appa.html (22 of 22) [9/19/2001 4:45:28 PM]


http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html
mailto:webmaster@oreilly.com

	oreilly.com
	VB .NET Language in a Nutshell: Appendix A: What's New and Different in VB .NET


